
Distributed Fault Tolerant Linear System Solvers
based on Erasure Coding

Xuejiao Kang∗, David F. Gleich†, Ahmed Sameh‡ and Ananth Grama§
Department of Computer Science, Purdue University–West Lafaytte,USA

{∗kang138,†dgleich}@purdue.edu,{‡sameh,§ayg}@cs.purdue.edu

Abstract—We present efficient coding schemes and distributed
implementations of erasure coded linear system solvers. Erasure
coded computations belong to the class of algorithmic fault
tolerance schemes. They are based on augmenting an input
dataset, executing the algorithm on the augmented dataset,
and in the event of a fault, recovering the solution from the
corresponding augmented solution. This process can be viewed
as the computational analog of erasure coded storage schemes.
The proposed technique has a number of important benefits:
(i) as the hardware platform scales in size and number of
faults, our scheme yields increasing improvement in resource
utilization, compared to traditional schemes; (ii) the proposed
scheme is easy to code – the core algorithms remain the same;
and (iii) the general scheme is flexible – accommodating a range
of computation and communication tradeoffs. We present new
coding schemes for augmenting the input matrix that satisfy the
recovery equations of erasure coding with high probability in the
event of random failures. These coding schemes also minimize
fill (non-zero elements introduced by the coding block), while
being amenable to efficient partitioning across processing nodes.
We demonstrate experimentally that our scheme adds minimal
overhead for fault tolerance, yields excellent parallel efficiency
and scalability, and is robust to different fault arrival models.

Keywords-Fault Tolerance, Erasure Coding, Linear System
Solvers, Kruskal rank

I. INTRODUCTION AND MOTIVATION

As parallel and distributed platforms scale, fault tolerance

becomes an increasingly important problem. Combined with

potential constraints on storage capacity and throughput, these

problems are rendered particularly challenging, since many

traditional solutions such as checkpoint/restart do not straight-

forwardly address them. In recent efforts, we have introduced

the concept of fault-oblivious parallel execution, based on

erasure coded computations [1]. Fault oblivious executions

suitably augment the input to a parallel program and execute

the program on this augmented input in a potentially faulty

environment. For a class of faults (fail-stop), the program

executes oblivious of the faults (i.e., stopped processes are not

restarted), and generates an augmented output. The true output

of the program is generated from an inexpensive operation on

the augmented output from the faulty execution. In this paper,

we present novel coding schemes and a complete fault tolerant

distributed sparse linear system solver, and show a number of

highly desirable properties of our solver.

In comparison to other algorithmic techniques for fault toler-

ance, our scheme separates fault tolerance from the algorithm,

and enables simple distributed algorithms. We address various

issues that arise in coding and executing coded computa-

tions in distributed environments, such as the sparsity of the

erasure code and their parallel solution using a CG solver,

and robustness to a variety of error arrival characteristics.

We support claims of superior performance of our solver

through a comprehensive experimental study. We specifically

demonstrate the following in the context of our distributed

erasure coded conjugate gradient solver: (i) the overhead of

input augmentation is low – orders of magnitude smaller

than corresponding overhead for replicated execution; (ii) the

conditioning of the augmented system is comparable to the

original system as evidenced by its convergence rates; (iii)

the overhead in iterations due to errors is low, as evidenced

in comparison of base solver and fault tolerant solver with

errors; (iv) the augmented input solver yields excellent parallel

performance in the presence of errors; and (v) for three

different fault arrival models – uniform, instantaneous, and

random, our fault tolerant solver yields excellent performance.

All of these results are validated on small to moderate sized

systems on up to 32 cores executing an MPI-based solver.

II. ERROR CORRECTING CODES, ERASURE CODED

STORAGE, AND ERASURE CODED COMPUTATIONS

We initiate our discussion with a brief review of three

related, yet critically distinct concepts – error correcting codes,

erasure coded storage, and our proposed concept of erasure

coded computations.

Distribution (Coding) Matrix

Data Vector

Distribution (Coding) Matrix

Data Vector

Coded Data Vector
Coded Data Vector

Fig. 1: Basic principles of erasure coding: the data vector is

multiplied with a distribution matrix to compute an augmented

vector. We can recover from a single element erasure by

solving the linear system corresponding to the remaining rows

of the distribution vector.

a) Error correcting codes (ECCs) and erasure coded
storage: Consider a code that augments k items of data with m

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.261

2649

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.261

2646

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.261

2478

redundant items, for a total of n = k+m stored items. If such a

code is capable of correcting m errors, then the code is space-

optimal and is referred to as Maximum Distance Separable

(MDS). Figure 1 presents two examples of an MDS systematic

code. The code is represented as a distribution (or coding)

matrix. This matrix has k +m rows and k columns, with the

property that any subset of k rows is linearly independent.

The distribution matrix is multiplied by the data vector (of

dimension k) to yield a n = k+m item coded vector. If m of

the elements of the coded vector are erased, one can recover

the data vector by solving the linear system corresponding to

the remaining k rows of the distribution matrix.

b) Erasure coded computation: While similar in spirit,

our proposed concept of erasure coded computations has

several significant differences. First, unlike ECC and erasure

coded storage schemes, erasure coded computations aim to

code the results of a computation in a fault tolerant manner,

as opposed to data. Second, data structures are not linear

bit strings(or blocks), rather, they are sparse matrices. Third,

recovery is numerical in nature; i.e., we do not need to perform

our computations over a finite field; rather, we can use real

arithmetic. This greatly relieves the algorithmic burden of

coding/ decoding. Finally, erasure coded computations must

deal with failure modes other than erasures. All of these issues

pose significant challenges, which form the focus of our recent

work [1] and the present paper.

c) Erasure Coded Computations: We illustrate the idea

for erasure coded computations in a simple form for a sparse

matrix-vector product. We assume that this matrix is parti-

tioned row-wise across processing nodes. In Figure 2, we

show an example of such an matrix, partitioned across eight

nodes. Consider the first simple case of coding the mat-vec

using a parity distribution matrix (Figure 1). We multiply the

distribution matrix with the given sparse matrix (Figure 2(b)).

This results in an augmented matrix – the first k rows of

the matrix remain unchanged because of the identity block

of rows in the distribution matrix. The last (augmented) row

is the negative sum of all other rows. In a graph view, this

corresponds to the addition of a new node (node 9) that is

connected to all other nodes in the original graph in a negative

sense. The operation is now performed using nine processing

nodes (as opposed to the original case of eight nodes). If one of

the processes has a fail-stop failure, the corresponding vector

element is lost. However, because of the structure on the row-

sums, the missing element can be inferred because the sum of

the output vector must be zero.

A. Erasure coded linear system solver

We now summarize the work in [1] that describes how to

extend these ideas to solving a linear system of equations. This

will form the basis for the distributed solver proposed in this

paper. Let x∗ be the true solution of the original linear system

Ax = b (1)

We set k ≤ n to be the allowed number of faults. The encoding

matrix E is an n-by-k matrix that should have the property that

any subset of k-rows is linearly independent. This condition

is equivalent to stating that ET should have Kruskal rank k.

Given matrices A and E, the augmented or encoded system,

the solution to the augmented system, and the augmented right

hand side, are given by:

Ã=

[
A AE

ETA ETAE

]
x̃∗=

[
x∗

0

]
b̃=Ãx̃∗ =

[
b

ETb

]

With these augmented structures, we solve:

Ãx̃ = b̃ (2)

Computing the new blocks of this system (such as AE)

must be done reliably through some type of existing fault

tolerance scheme, although this is a small amount of work.

When ET has Kruskal rank k, Gleich et al. [1] show a

number of properties that guarantee that solution recovery is

possible. In particular, let [yz] be any solution of the augmented

system, where y ∈ R
n. To recover x∗ in the presence of

errors, we need to compute y+Ez only [1]. This gives us a

straightforward recovery algorithm.

B. Benefits and challenges in erasure coded computations

We note several important points relating to this general

scheme of fault oblivious computations: (i) tolerating a single

fault using traditional replication requires twice as much

compute power; tolerating a single fault using deterministic

replay increases the makespan of the job by 100%; (ii) our

proposed scheme achieves fault tolerance to a single fault by

increasing the computation only fractionally, depending on the

code used; (iii) the benefits of our scheme are significantly

amplified as higher levels of fault tolerance are desired; (iv)

controlling fill in augmentation rows and associated commu-

nication overheads can be achieved using suitable codes; (v)

load balancing considerations can be achieved by distributing

the augmentation rows across processes.
a) Deriving Erasure Coded Computation Schemes: The

example in Figure 2 illustrated two codes – the first a parity

code and the second a block parity code. In erasure coded

storage, Vandermonde and Cauchy matrices are often used for

generating codes. While space efficient, these codes induce

significant communication overheads in our setting. For in-

stance, a Vandermonde matrix induces an augmentation block

that is dense. The block parity code illustrated in Figure 2

induces augmentation blocks with O(n) non-zeros (when

using n processing nodes), assuming an O(1) non-zeros in

each row of the input matrix. While this is more desirable than

the O(r) communication and computation of the Vandermonde

block (here r is the number of rows in the input matrix), this

poses constraints on scaling. We deal with this problem using

distribution matrices similar to structured low-density parity

codes (LDPC). These codes are described in Section III.
b) Fault models and Erasure Coded Computations: We

have, thus far, considered only fail-stop failures; i.e., in the

event of a fault, a process halts. Indeed there are other fault

models as well, ranging from transient (soft) fault to Byzantine

behavior. Soft/transient faults manifest themselves in the form

265026472479

1

3

5

6

7

2

4

8

1

3

5

6

7

9

2

4

8

P0

P1

P2

P3

P4

P5

P6

P7

P0

P1

P2

P3

P4

P5

P6

P7

P8

P0

P1

P2

P3

P4

P0

P1

P2

P3

(b) Graph of Original Matrix

Distribution (Coding) Matrix

Original Matrix

Augmented Matrix

(c) Augmentation Process: Multiplication by a distribution/ coding matrix.
Augmented matrix is tolerant to one node (row) failure.

(d) Graph of augmented matr

Controlling density of augmented blocks by combining
blocks (first row at each processor is combined into
first row of the augmented block). Note the reduced fill.
Matvec is still tolerant to one process failure.

Augmentation block is now distributed across processors.
This addresses problem of load imbalance. Note higher
communication cost of this scheme. This can be amortized
through coarse−grained processor partitions.

(e) An alternate distribution (coding) matrix that reduces density at the cost of increased augmentation for the same fault tolerance.

Distribution (Coding) Matrix

(a) Original Matrix

9

1 2

3

4

56

7

8

1 2

3

4

56

7

8

Fig. 2: Illustration of the concept of erasure coded computations: (a) a given sparse matrix and its (sparse) graph representation;

(b) the augmentation process multiplies the given sparse matrix with a distribution matrix (also called the coding matrix). This

results in a new matrix with one extra row, which is the sum of all other rows; (d) the graph view of the augmented matrix

shows a new node added to the graph; (e) using an alternate distribution matrix allows us to control the fill in the augmentation

rows. The augmented block now consists of two (sparser) rows. This computation is still resilient to one process failure. The

augmentation block can itself be distributed among processors for load balance.

of erroneous data, while Byzantine failures can result in state

changes at other processes. Our proposed method can be

extended to these other fault classes using an application

provided local fault detection scheme. These schemes are

presented in the form of asserts (predicates whose violation

signifies an error). When such a fault is locally detected, the

process is killed – thus emulating a fail stop failure. Asserts

work similarly when Byzantine failures are detected. Thus, a

combination of tolerance to fail-stop failures, combined with

user-specified predicates for local fault detection allow us to

deal with broader class of faults.

c) Systems Support for Erasure Computations: There are

important issues relating to system support and programming

models that are associated with the proposed fault oblivious

paradigm. Specifically, a single process failure often causes

the entire program to crash. In yet other scenarios, a crashed

process can cause group communication operations (reduc-

tions, broadcasts, etc.) to block. This program behavior would

not allow leveraging of our proposed scheme. Specifically, we

assume program behavior in which faulty processes simply

drop out of the ensemble, while the rest continue. In this

paper, we do not undertake the task of developing such

system software infrastructure. Rather, to demonstrate the

265126482480

feasibility and performance of our solver, we code it entirely

using asynchronous non-blocking communication operations.

While this is not a direct comparison with their synchronous

counterparts, it allows us to demonstrate performance and fault

tolerance characteristics of our solver.

III. CODING MATRIX FOR PARALLEL IMPLEMENTATION

Having established the algebraic basis for our method

(Section II-A), we now focus on the problem of developing

a suitable coding matrix E designed for working with dis-

tributed sparse matrices. This poses two challenges: first, the

matrix E must satisfy certain algebraic properties of Kruskal

rank in order to utilize the existing theory. Second, it must

simultaneously minimize fill in the augmented matrix Ã for

performance, both in terms of operation counts and minimizing

communication. In order to achieve these dual objectives, we

weaken the requirements on Kruskal rank k.

In the proofs from Gleich et al. [1], having Kruskal rank k is

necessary to guarantee that any possible subset of components

can fail and we can always recover true solution. This is

obviously the ideal scenario. However, it is a worst-case

analysis. In this paper, we relax the requirement as follows:

Definition A n-by-k matrix E satisfies the recovery-at-random

property if a random subset of k rows (selected uniformly with

replacement) is rank k with probability ≥ 1− 1/nc, c > 1.

We construct a matrix E by setting p successive elements

in each row to non-zero elements. These p non-zero elements

are selected in a staggered manner, i.e., the first p elements

in row 1, one zero followed by p non-zero elements in row

2, two zeros, followed by p non-zero elements in row 3, and

so on. More generally, for the ith row, the j = (i − 1 + s)
mod k elements for s ranging from 1 to p are set to random

reals in the range (0, 1). This choice of matrix E satisfies the

recovery-at-random property.

Proposition 3.1: Let E′ be a submatrix of E formed by

selecting any p rows of matrix E. The matrix E′T has rank p
(alternately, any p rows of matrix E are linearly independent).

Proof. We consider two cases: (i) all rows of matrix E′

have distinct non-zero structure; in this case, all rows of E′

are trivially linearly independent; and (ii) all rows of matrix

E′ have the same non-zero structure; i.e., the non-zeros form

a p × p non-zero block in matrix E′. In this case, we know

that the p × p block of randomly generated entries is non-

singular with probability 1. Therefore, all rows of matrix E′

are linearly independent in this case as well. Other cases where

some subset of rows of E′ have identical non-zero structure,

can be similarly argued to be linearly independent. �
Proposition 3.1 shows that any submatrix of p rows of

matrix E has full rank. We need that any submatrix of k rows

of matrix E must have rank k. Clearly, there exist degenerate

cases where this is not true – specifically, if we select k rows,

each with the same non-zero structure, we end up with a

submatrix of rank p, which is less than k. It is important

to note that this row-selection process is determined by the

location of failures in the system. We show in Theorem 3.2

that such degenerate selections are highly unlikely.

Theorem 3.2: The probability that a random set of k rows

of matrix E is linearly dependent is less than (e
p+1)

p+1
.

Proof. A necessary and sufficient condition for k rows to

be linearly dependent is that some selection of p+ 1 of these

k rows have the same non-zero structure.

Note that there are k distinct non-zero structures in the

n rows of matrix E. Furthermore, since rows are uniformly

assigned one of these k distinct row structures, the probability

that a row has a specific row structure is 1/k and the

probability that p + 1 rows have the same row structure is

(1k)
p+1. Since there are

(
k

p+1

)
ways to select p + 1 rows out

of the selected block of k rows, the probability that a selected

block of k rows is linearly dependent is given by:(
k

p+ 1

)
·
(
1

k

)p+1

≤
(

e

p+ 1

)p+1

. �

As p increases, it is easy to see that this probability rapidly

approaches 0. Stated otherwise, matrix E satisfies recovery-

at-random for p chosen as a suitable function of n.

We now focus on the problem of selecting the smallest value

of p in our coding matrix E to guarantee that we are unlikely

to have too many rows with the same non-zero pattern. we

investigate the expected maximum number of rows that share

the same non-zero structure. If this expected number exceeds

p, our recovery-at-random condition fails. Therefore, we must

select p greater than this expected maximum number.

Theorem 3.3: The expected maximum number of rows

from among k randomly selected rows of matrix E that have

same nonzero structure is O(ln k
ln ln k).

Proof. Define a random variable M to be the maximum

number of rows that have the same non-zero structure when

we select k rows uniformly at random from matrix E and

Pr(M = t) be the probability that the random variable takes

value t. For a given non-zero structure, we fashion each row

selection as a Bernoulli trial, with success corresponding to the

selection of the specified row structure, and failure otherwise.

Since there are k distinct row structures, all with identical

probability of selection, the probability of exactly t successes

is given by the Bernoulli distribution as
(
k
t

)
(1k)

t
(1− 1

k)
k−t

.

Since there are k different row structures from which we select

the one common structure, the probability:

Pr(M = t) =

(
k

1

)(
k

t

)(
1

k

)t(
1− 1

k

)k−t

≤ k

(
e

t

)t

For t = c ln k
ln ln k , where c is some constant, we can show

Pr(M = t) ≤ 1
k2 . The expected maximum number of rows

sharing a row structure E(M) from k randomly selected rows

of matrix E is given by:

E(M) =

k∑

t=1

t · Pr(M = t)

265226492481

=

c ln k
ln ln k∑

t=1

t · Pr(M = t) +

k∑

t= c ln k
ln ln k

t · Pr(M = t)

≤
c ln k
ln ln k∑

t=1

c ln k

ln ln k
· Pr(M = t) +

k∑

t= c ln k
ln ln k

k · Pr(M = t)

=
c ln k

ln ln k

c ln k
ln ln k∑

t=1

Pr(M = t) + k

k∑

t= c ln k
ln ln k

Pr(M = t)

≤ c ln k

ln ln k
+ k · 1

kc/2−1
= O(

ln k

ln ln k
). �

Theorems 3.2 and 3.3 provide bounds on values of p for

a given value of k. In our experiments, we select k =
4, 8, 16, 32, and the number of nonzeros per row p =
min (k, 5). For these selections, our choice of p exceeds the

expected number of rows that share the same row structure.

IV. PARALLEL IMPLEMENTATION OF ERASURE CODED CG

Gleich et al. show that Ã is symmetric-positive-semi-

definite when A is symmetric positive definite and we can

apply CG in this setting when Ã and b̃ are consistent [1]. This

requires the following two-term recurrence form of CG [2].

Algorithm 1 Fault Oblivious CG with a two-term recurrence.

When we notice a fault, we set βt = 0 at that iteration.

1: Let x0 be the initial guess and r0 = b−Ax0, β0 = 0.

2: for t = 0, 1, . . . until convergence do
3: βt = (rt, rt)/(rt−1, rt−1)
4: pt = rt + βtpt−1

5: qt = Apt

6: αt = (rt, rt)/(qt,pt)
7: xt+1 = xt + αtpt

8: rt+1 = rt − αtqt

9: end for

The augmented matrix Ã and the augmented vectors are

distributed among multiple processes by rows. The operations

of Algorithm 1 affected by faults in a distributed environment

are the aggregation operations – inner products and the matrix-

vector multiplication. Let the index set associated with process

i be Ii, then [n + k] =
⋃

i Ii and the set of faulty indices is

Ft =
⋃

i∈Pt
Ii.

• Inner products (rt, rt) and (qt,pt). The viable processes

carry out the all-reduce operation by skipping the faulty

components Ft in the vectors.

(rt, rt) =
(
(rt)[n+k]\Ft

, (rt)[n+k]\Ft

)
(qt,pt) =

(
(qt)[n+k]\Ft

, (pt)[n+k]\Ft

)
• Matrix-vector multiplication qt = Apt. A viable process

carries out its local aggregation operation for computing

AIi,:pt by skipping the faulty components Ft in pt.

AIi,:pt = AIi,[n+k]\Ft
(pt)[n+k]\Ft

Another technical issue we need to consider when faults

happen is the update to the search direction pt. Here, when

we observe a fault, we truncate the update pt = rt + βtpt−1

to be

pt = rt.

This corresponds to a reset of the Krylov process.

We now consider the recovery of the solution to the raw

system (1). Suppose the erasure-coded CG converges on the

augmented system (2) after T iterations. Let the returned

approximate solution be [cr]. We can recover the intended

solution to the raw system (1) through the equation[
x∗

0

]
= x̃+

[
E

−Ik

]
r.

a) Partitioning Considerations.: Even with the sparse

matrix E described in Section III, the augmentation blocks in

Ã potentially introduce dense blocks if not suitably computed.

For this reason, we use a two-step process. In the first step, we

order the input matrix (Figure 3(a)) using a traditional matrix/

graph partitioning technique such as Metis(Figure 3(b)). We

then use this ordered matrix to compute Ã (Figure 3(c)).

The resulting matrix is then reordered once again to partition

Ã across various nodes in a parallel/ distributed platform

(Figure 3(d)). The first step minimizes non-zeros in Ã, and

the second partitioning step minimizes communication for the

solver applied to Ã.

(a) original matrix (b) original reordered matrix

(c) augmented matrix (d) augment reordered matrix

Fig. 3: Illustration of the process of computing and reparti-

tioning augmented matrix Ã.

V. EXPERIMENTAL RESULTS

We report comprehensive results from our MPI implemen-

tation tested on up to 32 processing cores on four selected

matrices.

a) Input Matrices, Augmented Systems, and Execution
Parameters: We select four matrices from the University of

Florida Matrix Collection – bcsstk18 with 12K rows and

149K nonzeros, cfd2 with 123K rows and 3085K nonzeros,

inline with 504K rows and 36816K, and geo 1438 with

1438K rows and 60236K nonzeros.

265326502482

These matrices are selected based on their sizes, and be-

cause they are SPD, i.e., both CG on the raw and augmented

system converge on these matrices. All matrices are first

reordered using Metis. To construct the augmented system, we

first build a suitable encoding matrix E, and use this matrix

to generate the coded system. The maximum number of CG

iterations for the four matrices are set to 10000, 10000, 25000,

and 50000, respectively. The relative error tolerance is set to

10−10 for all matrices. Our tests show that CG runs to the

maximum number of iterations for the last three matrices.

We test a number of fault models. In our initial set of

experiments we use a uniform fault arrival model – faults

arrive starting from iteration 1000, and occur every 100

iterations thereafter. Faults are distributed uniformly across

processors. Once a fault happens, the search direction of CG is

set as the residual from the last iteration. Later in this section,

we experiment with alternate fault models and quantify their

effect on performance.

A. Convergence of Raw System and Augmented System

(a) bcsstk18 (b) cfd2

(c) inline (d) Geo 1438

Fig. 4: Convergence of raw and augmented systems for dif-

ferent input matrices.

Our first set of experiments is designed to compare the con-

vergence rates of the raw system and the augmented system.

Figure 4 shows convergence of CG for the four matrices for

the raw and augmented system. The relative residual for the

augmented system is computed with respect to the augmented

matrix and not the solution to the raw system. We note from

these experiments that input augmentation does not adversely

or significantly impact convergence of the base iterative solver.

To evaluate the convergence of the solution to the raw system,

we execute the solver on the augmented matrix, except, in

this case we compute the residual with respect to the raw

system. This set of results demonstrates how well the solution

converges to the true solution. Figure 5 plots this convergence.

For matrices bcsstk18 and inline, we can achieve nearly the

same level of relative tolerance as the raw system. For cfd2,

(a) bcsstk18 (b) cfd2

(c) inline (d) Geo 1438

Fig. 5: Convergence of raw and augmented system, with

residual computed on the raw system. All results use k = 4.

although we do not observe the same relative tolerance as the

raw system, we can achieve a relative residual of 10−6. For the

largest matrix Geo 1438, we observe better relative tolerance

from the augmented system than the raw system. Overall, we

observe that the convergence of the solution with respect to

the raw system is comparable to the base (error free solver

applied to the raw system) method.

B. Parallel Performance of the Solver on Augmented Systems

(a) bcsstk18 (b) cfd2

(c) inline (d) Geo 1438

Fig. 6: Parallel performance of augmented systems.

We now investigate the parallel performance of the CG

solver on the augmented systems. Figure 6 presents the run-

time of the solver on the raw system, augmented system with

4, 8, 16, and 32 faults using different number of processors. We

make two observations from these results. First, the runtimes

consistently decrease with increasing number of processors for

all experiments. Second, we note that increasing the number of

265426512483

faults increases the parallel runtime. However, this increase in

runtime is much lower, compared to the use of active replicas,

for instance. Specifically, a tolerance to a single fault would

need an active replica for each processor – effectively halving

parallel efficiency. This is significantly worse than our results

in Figure 6. Figure 7 plots speedups from parallel execution

(a) bcsstk18 (b) cfd2

(c) inline (d) Geo 1438

Fig. 7: Speedups of augmented systems.

of the solver on the raw and augmented systems. For the

augmented systems, we use K = 16 for all experiments. We

notice here that in all of the cases, the solver yields good

speedups; however, we also notice that the augmented system

yields superior speedups compared to the raw system. This

is explained by the fact that the augmented system is slightly

larger, and therefore, has more computation associated with it.

This, combined with similarly low communication overhead

yields excellent speedups for the augmented systems.

C. Effect of Fault Rate on Results

(a) bcsstk18 (b) cfd2

(c) inline (d) Geo 1438

Fig. 8: Effect of fault rate on convergence.

(a) bcsstk18 (b) cfd2

(c) inline (d) Geo 1438

Fig. 9: Convergence of solvers for different fault arrival

patterns. In each case here, the augmented matrix uses k = 4.

All of our previous results assumed a simple fault arrival

model in which faults arrived at a constant rate of one per

100 iterations. In the next set of results, we vary the fault

arrival rate and pattern. Figure 8 plots the convergence rate

of the solver for varying fault arrival rates. We observe faster

convergence when arrival rate is slow, and vice versa. This

can be explained by the fact that as faults happen, we set the

search direction of CG as the previous residual. Consequently,

the higher the fault rate, the more frequently we change search

direction and the associated Krylov subspace.

D. Effect of Fault Pattern on Convergence

We now investigate alternate fault arrival patterns and eval-

uate their impact on convergence of the solver. We specifically

experiment with three fault patterns – instantaneous (in which

all faults happen at the same time), uniform (faults happen at a

uniform rate), and random (in which faults happen at random

intervals with a defined mean and variance). Instantaneous

faults happen when partitions of machines fail (or multicore

nodes fail), resulting in multiple instantaneous failures. Ran-

dom faults correspond to random single core faults. In each

of our experiments, faults are initiated at iteration 1000. Our

results in Figure 9 show that the best convergence rate is

achieved for the random fault arrival model. The correspond-

ing rate for instantaneous arrivals is close to the random

arrival case. These results show that our method is particularly

attractive for realistic fault arrival models.

VI. RELATED RESEARCH

The current state of the art in fault tolerance separates

into techniques that support fault tolerance through a pre-

scribed computational engine or system, such as Google’s

MapReduce [3], or those that seek to modify a specific

algorithm, though detailed study of its properties, to achieve

fault tolerance. Our work can be considered something in

between these extremes, where we prescribe a way to modify

265526522484

the original problem for fault tolerance, and then show how

to execute a standard algorithm in a fault-oblivious manner

to compute a solution. Commonly used techniques such as

checkpoint-restart, active replicas, and deterministic replay

are not competitive in the performance regimes we explore.

MapReduce, for example, has drawbacks of staged execution

and increased job makespan, particularly when the number of

faults is large. Furthermore, checkpointing to persistent storage

(like a distributed file system) can add significant overhead.

The results most closely related to ours originate in the

work of Huang and Abraham [4]. They add a checksum row

and column to detect soft errors in a variety of dense matrix

computations. This result motivated a line of research [5]–[10]

on generalizing the concept, dealing with fail-stop failures, and

parallel computation. However, the focus of their work on iter-

ative methods for linear systems involves efficiently emulating

a checkpoint restart system, where the efficiently computed

checksums are used instead of the checkpoints [10]. Our work

simultaneously encodes the entire problem formulation and

seeks to ensure erasure coding (rather than checksumming)

on the entire end-to-end solution rather than at each step.

Alternative hybrid strategies for solving linear systems of

equations with faults include the selective reliability frame-

work, where algorithms are programmed to be tolerant to

faults in certain regions of the computations [11]. In the

context of linear solves, these methods will prescribe a set

of critical work that must be done reliably and other sections

of fault tolerant work that could proceed with a variety of

soft errors. For instance, in linear system solvers, residual

computations must be done reliably to gauge convergence

whereas preconditioning applications can tolerant a variety

of faults. This setting then involves flexible Krylov subspace

methods, like flexible GMRES [12]–[15]. Generating synthetic

but realistic soft errors [16] is a challenge for such methods.

In comparison with the selective reliability work, our

erasure-coded approach only requires the encoding and final

decoding to be reliable, and these involve a small amount of

work. Selective reliability for standard iterative methods usu-

ally requires sequences of reliable and fault tolerant sections of

code. In comparison with the algorithm checksum work, our

ideas explore the use of coding schemes in iterative algorithms

in an entirely different manner, where we clearly establish a

general framework for these ideas in iterative methods. This

involves concepts related to Kruskal rank, as mentioned in

previous work on algorithmic fault tolerance [9]. Prior work

on fault tolerant iterative methods using coding involves some

similar ideas, but in the context of algorithms that restore the

state on a per-iteration basis, instead of solution recovery after

the entire computation, as in our case.

VII. CONCLUSION

Fault tolerance is an important problem for scalable parallel

and distributed systems. We show how to take recently pro-

posed erasure coding schemes and adapt them to a scenario

suitable for distributed computation. This involves creating

a new encoding matrix that satisfies the recovery equations

for almost all sets of failing components. We show how to

partition these matrices and demonstrate their advantage as

far as solving systems up to 32 cores in a variety of synthetic

fault arrival scenarios.

Our proposed erasure coded computation scheme is general,

and can be applied to a number of other problems. Ongoing

work in our lab applies these schemes to eigenvalue problems,

graph analyses, and other machine learning kernels.

VIII. ACKNOWLEDGMENT

This work was supported in part by DOE award DE-

SC0014543.

REFERENCES

[1] D. F. Gleich, A. Grama, and Y. Zhu, “Erasure coding for fault oblivious
linear system solvers,” SIAM J. Sci. Comp., To appear.

[2] G. Meurant, The Lanczos and Conjugate Gradient Algorithms: From
Theory to Finite Precision Computations (Software, Environments, and
Tools), 2006.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, 2004, pp. 10–
10.

[4] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Comput., vol. 33, no. 6, pp. 518–528,
Jun. 1984.

[5] Z. Chen and J. Dongarra, “Numerically stable real number codes based
on random matrices,” in Computational Science(ICCS), 2005, pp. 115–
122.

[6] Z. Chen, G. Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca, and
J. Dongarra, Fault tolerant high performance computing by a coding
approach, 2005, pp. 213–223.

[7] Z. Chen and J. Dongarra, “Algorithm-based fault tolerance for fail-stop
failures,” IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 12, pp. 1628–
1641, 2008.

[8] Z. Chen, “Optimal real number codes for fault tolerant matrix opera-
tions,” in Proceedings of the ACM/IEEE Conference on High Perfor-
mance Computing, 2009.

[9] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithm-based
fault tolerance applied to high performance computing,” J. Parallel
Distrib. Comput., vol. 69, no. 4, pp. 410–416, Apr. 2009.

[10] Z. Chen, “Algorithm-based recovery for iterative methods without check-
pointing,” in Proceedings of the 20th ACM International Symposium on
High Performance Distributed Computing, 2011, pp. 73–84.

[11] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen,
“Fault-tolerant linear solvers via selective reliability,” CoRR, vol.
abs/1206.1390, 2012.

[12] Y. Saad, “A flexible inner-outer preconditioned gmres algorithm,” SIAM
J. Sci. Comput., vol. 14, no. 2, pp. 461–469, Mar. 1993.

[13] V. Simoncini and D. B. Szyld, “Flexible inner-outer Krylov subspace
methods,” SIAM Journal on Numerical Analysis, vol. 40, pp. 2219–2239,
2003.

[14] J. v. Eshof and G. L. G. Sleijpen, “Inexact krylov subspace methods for
linear systems,” SIAM J. Matrix Anal. Appl., vol. 26, no. 1, pp. 125–153,
Jan. 2004.

[15] V. Simoncini and D. B. Szyld, “Theory of inexact Krylov subspace
methods and applications to scientific computing,” SIAM Journal on
Scientific Computing, vol. 25, pp. 454–477, 2003.

[16] J. Elliott, M. Hoemmen, and F. Mueller, “A numerical soft fault model
for iterative linear solvers,” in Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing.
ACM, 2015, pp. 271–274.

265626532485

